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The simplest model problem of one-time correction of the motion of a system with one 

degree of freedom in the presence of measurement errors is considered. The optimal cor- 
rection problem is formulated and solved in minimax (guaranteeing) form, i. e. with allow- 
ance for me worst case permitted by the instantaneous measured data. 

Such problems have already been considered from the probabilistic standpoint [l] . 

Close, but somewhat different, minimal problems are investigated in recent paper [z] . 

1. Formulation of the problem. Let a system with one degree of freedom 

move uniformly in the absence of control, and let control be effected by a single pulse 
which can be applied at any instant of motion. The motion of the system is then described 

by Eqs. 5 =x0 + qt, u =vo (9 d t Q ‘5) 

3 =zo + vat + u (t - T), v=ve+u (r < t 6 T) 
(1 l I) 

Here t is the time, t is the coordinate of the system, u is its velocity, z. and u. 
are the values of the coordinate and velocity at the instant t = 0, T is the instant of 

termination of the process, t is the instant of correction, and u is the magnitude of the 
correction pulse. The control parameters r and u are subject to the restrictions 

o<r<T, lul < u (4 -2) 

Here u is the maximum absolute value of the correction pulse. The initial values of 
the coordinate and velocity are known to within certain errors, i.e. they are subject to 
the restrictions Ix0 -al Q e, 100 - b I 4 is (1.3) 

Here u and b are known approximate values of the coordinate and velocity ; E and 6 
are the specified measurement errors. The coordinate and velocity of the system are 
measured continuously during its motion, and inequalities 

lx (t) - Y 0) I 4 6 Iv (0 - 2 (0 I < 6 @St 6T) 
hold. 

(1.4) 

Here y (t) and 2 (i!) are the approximate measured values of the coordinate and velo- 
city at the instant t. It is clear that y (0) = a, z (0) = b. 

We are required to choose the instant of correction T and the correction pulse u sub- 
ject to restrictions (1.2) in such a way as to minimize the deviation (miss) at the end of 
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the process, i. e. the quantity @ (T)I. W e assume that the measured values of &# (8) and 
5 (t)’ become known immediately, so that the control is determined in accordance with 
the arriving information. We shall consider the problem in minimax formulation, i. e. 

with allowance for the worst case permitted by the measured data. The results obtained 
are therefore the most reliable, i. e. guaranteeing, results. 

Determining the optimal control means finding the rule from which it is possible at 
each instant to find the parameters r and U#on the basis of the measured data up to that 
instant. Let $0 be some instant prior to correction. The minimax-optimal values of r 
and u corresponding to the instant $0 are then determined by finding the following mi- 
nimax : 
J (b) =mjn yy rn.nry~ l;z (T)/, x(T) =zo + uoT f u (T - T) (i.5) 

Let us explain this r@elation. The formula for x (T) follows from (1.1). The first mini- 
mum in (1.5) is computed with respect to the r. lying in the interval [to, TJ ; the second 

minimum is computed with respect ro the u satisfying the condition /t&/g U. The first 
maximum in (1.5) must be determined with respect to all of the functions. y(t) and z (t) 
defined in the interval (to, T] such that there exists at least one system trajectory which 

satisfies restrictions (1.4) for all t in the interval [O, r]. In other words, the measured 

data must be noncontradictory. The functions y (it) and a (t) are otherwise arbitrary. 
The second maximum in (1.5) must be computed with respect to all the initial values 
xs,and vo permitted by the measured data prior to the instant r. These measured data 
can be broken down into two groups c those obtained for 0 Q t < to, and those obtained 
for to < t < %. We denote by DO the set of points in the parameter plane Xo, Vo, 

bounded by inequalities 

Is + vat - Y (Ql Q e? l&O - 2 (0 I & 6 (W 
where t runs through the values from 0 to lo. Inequalities (1.6) follow from (1.1) and 
(1.41. SimiIarly, i?, denotes the set of points in the plane XO, & bounded by inequali- 
ties (1.6) for all t from the interval (to, T]. It is clear that the set a0 can already be 
determined at the instant t = tot and that the set D, depends on the functions y (t) 

and z (t) in the intervai (to, r]. 
The second maximum in relation (1.5) must be determined with respect to all the xa, 

and u. from the set L) =L)a fl Dt, which is the intersection of the sets Da and Dr. 

The requirement concerning the noncontradictory character of the measured data im- 
posed above on the functions y (t) and z (t) can be formulated as follows: the set I) 

must be nonempty, We note that the sets DO, Dl and D are closed convex sets. We 
have thus characterized completely the domains in which the extrema in (1.5) are com- 
puted. The order of succession of the extrema in (1.5) is determined by the order of 

arrival of the information and of the decisions. 
In principle, the optimal control algorithm reduces to the following. New measured 

data y(to) and a(bs) become known at each instant t,, . This enables us to construct 
the domain Do and to compute minfmax (1.5) at this instant. At the same time we 

determine the quantity r(to) lying in the interval [to, T]. If it turns out that t>&, 
then no correction is required at the instant t,, and we proceed with tracking, continu- 
ously computing the instantaneous values of r (to). As soon as ‘t (to) - &, we make a 
correction. Here the first maximum in (1.5) can be omitted, since the interval [to, 71, 

contracts to a point. The magnitude u of the correction pulse is determined on compu- 
ting the last (in order of recording) two extrema in (1.5). when the domain D coincides 
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with DO. For t > v the motion is uncontrolled. 
The above approach can be extended to more complex (e. g. to many-dimensional) 

problems of correction with incomplete measured data. However, realization of the op- 

timal control requires determination of minimax (1.5) at each instant even in the simple 
problem under consideration, and this requirement entails time-consuming computations. 

An alternative formulation of the problem is possible. Let the procurement or proces- 
sing of the tracking data require the time t. < T. The motion is then uncontrolled for 

t<t.. At any instant t = ts > t, the instant of correction c (3 must be determined 
by computing minimax (1.5). the only differences being that the domain DO is deter- 

mined by inequalities (1.6) for 0 ( t < ra - t. and the domain D, by inequalities(l.6) 

for ts - r.<r<t- t,, and that the functions y (t) and L rt) ,are considered in the 

interval (ts - t,, I - t,]. In other respects the optimal correction computing scheme 

remains unchanged. 
6. Somr 8implificrtlon8. Minimax (1.5) can be simplified. We note that 

the functions y (t) and I (t) from which the first maximum in (1.5) is computed 
affect only the domain Dr,defined by inequalities (1.6) for ts ( t < x. Let us show 
that these functions can be taken in the form 

Y(E) = Y (to) + yT-JI’,‘” (t - to), 

where Y is some constant, 

z(t) = z(to) ) vo<t<q (24 

Let us construct the domain Dt corresponding to functions (2.1). Substituting (2.1) 
into the left sides of inequalities (1.6) for to < t < T, we obtain 

]Xo+vot--y(t)] ==(7-~~)-t~20(2-~~)+v,t(7-~~)- 

- Y Go) (r - to) - [Y - Y (to)1 (t - to) I = s 1 zo + vote - y (to) I + 

(24 
Setting t = lo and t = X, we obtain from (2.2) and (1.6) inequalities 

IX0 + noto - Y (to) I < 8, Iv0 -2 (to)i 4 6, ix0 + vor -Yi d e (2.3) 
Inequalities (2.3) belong to the set of inequalities defining the domain Dr. It is easy 

to verify with the aid of relations (2.2) that if inequalities (2.3) are fulfilled, then ine- 

qualities (1.6) are also fulfilled for all i! from the interval [to, T]. Thus, inequalities 
(2.3) define completely the domain D, for functions (2.1). But the first two inequalities 
of (2.3) coincide with (1.6) for t = to, i. e. they belong to the set of inequalities which 
define the domain Do. Since the domain D is the intersection of the domains Do and 
Dt, the first two inequalities of (2.3) can be omitted, since this omission can have no 
effect on the domains D, Thus, as our domain D, corresponding to functions (2.1) we 
can take the domain of the plane XoGo, VOC defined by inequality 

IX0 + tJ0.r -Yf<e (2.4) 
Let y (t) and z (t) be any pair of functions defined in the interval (to, x], and let 

Y (9 = Y. The set of inequalities of the form (1.6) defining the domain D, for these 
functions must then include (for t = r) inequality (2.4). Hence, if we replace the 
given functions y (t) and s (t) by functions of the form (2. l), the domain D, will not 
become smaller in any case. This means that the domain D also does not become 
smaller, and that the maximum over this domain can only increase. Hence, in seeking 
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the maximum in (1.5) we can confine ourselves to functions of the form (2.1) and seek 
the maximum with respect to the constants Y 

Relation (1.5) can be rewritten as 

J (to) = min rnp mfii max Iso + uJ + u (T - r) 1 (2.5) lb ra, vo 
The. domain D over which we seek the last minimum in (2.5) is the intersection of 

the domains Do and D, defined by inequality (2.4). The quantity y is restricted by the 
condition that the domain D must be nonempty. The remaining ranges of the parame- 

ters involved in computing (2.5) are the same as for (1.5). 

The quantity J (to) in (2.5) does not increase with increasing to for any measured 
data. This is because J is a guaranteed estimate of the quantity lz (T) 1 with allowance 

for the worst possible future data, so that J can only diminish. The functional J (to) 
has its maximum value J (0) = Jo at the initial instant, when only measured initial 

data (1.3) are known, The quantity Jo is an estimate of the miss 1~ (T) 1 obtained 

with the best control and the worst measured data. The possibility of subsequent meas- 
urements is taken into account in computing Jo , even though the results of these meas- 

urements are not known in advance. 

3. Computing the functional. Let us determine the quantities Jo = J (0), 
‘c =T (0) and u corresponding to the instant t o = 0 in relation (2.5). The domain 

Do for to = 0 is defined by the two inequalities of (1.3). These inequalities imply that 

a--e+@ - 6)f < x0 + 007 < a + e + (b + 6) r (3.1) 
On the other hand, from inequaliq (2.4) defining the domain D, we obtain 

Y -e<x0+v0TdY+e (3.2) 
We introduce the notation 

Y’ =a + (b - 6) 7, Y” = a + (b + S)_,T (3.3) 
Comparing relations (3.1) and (3.2). we note that for Y < Y’ the left-hand inequa- 

lity of (3.1) implies fulfillment of the left-hand inequality of (3.2). while for Y >Y” 
the right-hand inequality of (3.1) implies fulfillment of the right-hand inequality of 
(3.2). Hence, for Y < Y’ or for Y >Y” the domain D is certainly smaller than for 
Y = Y’ or for Y = y”;respe’ctively. Since we seek the maximum over Yin (2.5). 

and since this maximum does not increase with decreases in the domain D, which de- 
pends on Y, it follows that the maximum in (2.5) can be sought only with respect to 

the Y lying within the bounds Y’ f Y < Y” (3.4) 
The domain D defined by inequalities (1.3) and (3.2) can be specified in the form 

a--<xo\(a+e, v’ < vo < lY 

u’ = max [b - 6, (Y - e - xo)/r]u” = min [b + 6, (Y + e -x,)/z] (3.5) 

It is not difficult to verify that upon fulfillment of conditions (3.4) we have V’ < V” 
for any x0 from the interval defined by inequalities (3.5). Hence, the domain D is non- 
empty under conditions (3.4). Let us rewrite (2.5), omitting the absolute value symbol 
and computing the maximum with respect to us under restrictions (3.5). 

Jo = min myx min max { [max (x0 + uJ’) +- u (2’ - T)], 
T u 4. or 

(3.6) 
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[max (- z. - voT) - u (T - r)]} = 
14. 00 

= min m;x min max {[max (zo + u”T) -j- u (T - 7)], 
1 U 5 

[max (- z. - t/T) - u (T - 7;]} 
5 

Making use of expression (3.5) for u”, we can write 

“x”;” (x0 + v”T) = yx min [fi (zo), h. (z0)], u - e < x0 < u + e 

fi (x0).=x0 + (6 + 6) T, f2 (xo) =[(Y + 8) T - xo (T -91/r (3.7) 

The functions fi(zo) and /a(zo) are linear in z. ; the former increases and the second 

decreases with increasing x0. Hence. maximum (3.7) is attained when fs (50) = fa (50) 

if the root of this equation, which is given by 

5 
I, =Y +e -(b+h)r (3.8) 

lies in the interval [U - e, a + e]. Inequality (3.4) implies that X” < u + e at 

all times. But if lE” < cc - a, then fa (xa) < fi(xo) for al1 zo from the interval 

[a - 8, u + 81, in which case maximum (3.7) is attained for z. = 0 - 8 and is 

equal to fa (a - 8). Thus, maximum (3.7)is attained for zo = max (a?, u - e) and 

is equal to p” = iax (ZO + u” T) = fz [ mali (x”, a - e) J 

Taking account of re?stions (3.7) and (3.8), we can write the above equation in ex- 

panded form, 

F” (Y, T) =[(Y - a ,+ 2e) T + (a - e) T]/*, Y < y2 

F”(Y, +=Y+e+(b+Q(T -r), Y>Ya (3.9) 

y2 =o+(b+d)r--2e 
Relation (3.9) becomes 

J o = min my”” min max [F”(Y, I) + u (T - r), F’(Y, r) - u(T -r)] (3.10) 
T U 

Here the functio:F’ is computed similarly toF” in (3.9) and is given by 

F’ (Y, T) = - Y + e. - (b - 6) (T - r), Y < Y, 

F’ (Y, T) = [( - Y + a + 2e) T - (a + e) II/T, Y > Y, 

YI = a + (b - 6)r + 2e 43.11) 

The minimum with respect to u for lu 1 < U in (3.10) is easy to find, since the 
minimizable function is the maximum of two functions linear in U. The required mini- 
mum is attained either at the point of intersection of the graphs of these functions, or at 
the bounds of the interval. To put it more precisely, the minimizable value of u is 

given by 
u=- U for F’-F’(-ZU(T-T) 

u=u for F -P>ZCJ(T-T) 

u=(F’- F”)/[2(T--c)] for IF’--F”162U(T--r) (3.12) 
These values of U are associated with the following values of the minimizable func- 

tion 
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P’l -U(T -T), F’-U(T -r), (F” + F’)/2 (3.13) 
respectively. 

It is clear from inequalities (3.12) that the value of u which must be chosen in accord- 

ance with these inequalities is always associated with the largest of the three expressions 
of (3.13). This enables us to rewrite relation (3.10) as (3.14) 

J o = min max max [F” - U (2’ - r), F’ - U (T - r), (F’ + F”)/2] 
Y 

The optation of maximization with respect to Yand the operation of choosing the 
maximum of the three expressions of (3.14) can be interchanged. According to (3.9) 
the function F”increases monotonically with increasing Y ; according to (3.11) the 
function F’decreases monotonically with increasing Y,. This means that they attain 

their maxima at the bounds of interval (3.4). Hence, we can write 

J o = min max (F,, Fz, F,), Fl = F’ (Y’, r) - U (T - r) 

Fa =F” (Y”, r) - U (T - r), F1 = y,m;zp,F’ (Y, 9+F”(Y,W2 (3.15) 

The relations of (3.3). (3.9). and (3.11) for Y’, Y”, Y1 and Yz imply the inequali- 
ties Y’ < Yi, Y” > Yz. Let us compute the functions F,, Fz with allowance for 
these inequalities and make use of relations (3.15). (3.9). (3.11) and (3.3). 

Fl = -Y’+e-(b-_)(T-%)-U(T--)= 
=-(u+bT)+e+aT -U(T -r) 

FZ = Y” + e + (b + 6) (T - r) - U (T - r) = 
=a+bT+e+6T-U(T-7) 

Substituting the above into (3.15). we can rewrite the latter as 

Jo = min max [F. (r), F, (r)] 

Fo (~1 =la + bTl + e + &T- U (T -q 

Fa (4 y,p-;-w, q, FI (Y, T) = [F’ (Y, r) + F” (Y, r)j / 2 (3.16) 

We consider three cases in computing the function Fs’. 
1. Let 6r < e. Eqs.(3.3), (3.9) and (3.11) here yield 

Y, g Y’ < Yrr < Y, (3.17) 

We can compute the functions F, and Fs from relations (3.16), (3.9), (3.11) and 

‘Ondition (3* 17). J’, (Y, r) = a + 6 (7’ - T)‘), F, (r) = e + 6 (T - T) (3.18) 

The function Fd does not depend on v in this case. 
2. If e < 6% < 28, then from (3.3). (3.9) and (3.11) we find that 

Y’ Q Y, < Yl Q Y” (3.19) 

Eqs. (3.16). (3.9) and (3.11) under conditions (3.19) imply that the function F, is 
piecewise-linear in Y. As Y increases, the function F, increases in the interval [Y’, Y,], 
remains constant in the inarval [Us, Y,] , and decreases in the interval [Yi, Y”]. Hence, 

it attains its maximum, for example. when Y = Yv 
Computing F, (T) = F, (Yl. t) by means of relations (3.9). (3.11) and inequalities 
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(3.19). we arrive at our previous formula for. P’s (Formula (3.18)). 

3. According to (3.3). (3.9) and (3.11). for 6% > 2e we have 

Y’ ( Y, Q Y, g Y” (3.20) 

Under conditions (3.20) inequalities (3.16). (3.9) and (3.11) imply that as Y increases, 
the function’F, increases in the interval. [Y’, YJ , remains constant in the interval [Yl, 
Y,1 , and decreases in the interval [Y,, Y”j . Its maximum, which it attains when 

Y = Y1,can be found from relations (3.9). (3.11). (3.16) and (3.20). 

F, 0) = F, (Y,, T) = IF’ (Y,, r) -I- F” (YI, r)] / 2 = e (2T - T) / ‘c (3.21) 

Recalling Eqs. (3.18)and (3.21). we find that in all of the cases considered 

pa (r) = e+6(T- T) for r < 2e6’l, Fs (I) = e (2T - 7) / % for T > se&1 (3.22) 

The function max [Fe (f), F, (r)] defined by Eqs. (3.16) and (3.22) characterizes the 
minimax value of the miss as a function of the instant of correction r. Let us now find 
its minimum with respect to T for 0 < r < 2‘. First, we note that the functions Pa(r) and 

pa (v) defined by Eqs. (3.16) and (3.22) for all real r are continuous and monotonic, 
and that F,, (r) increases strictly and F, (T) decreases strictly for all r. Hence, the abso- 

lute minimum with respect to T of the function max (Fo, Fa) is attained when Fe (T) ~1 

= F, (z). 
This equation clearly has a single root v’, which is easy to find from Eqs. (3.16) and 

(3.22). Carrying out the necessary computations, we obtain 

~,=~,=(UT-_U++~TI)(U+~)-~ for t1<2eP1 

r. = t, = Va Cl-l {[(I a + bT 1 + 2e + 8T - UT)% + (3.23) 

+ 8UeT]‘/’ f UT - l‘a + bT l - 2e - 6T) for L, > 2e6-* 

The two cases, of which only one is realized in any case, correspond to the two analy- 
tic expressions for the function F, in relations (3.22). 

The function max (Fe, F,) decreases monotonically for r < X. and increases monoto- 

nicallv for r > 7.. We can verify with the aid of Eqs. (3.23) that 2, < T and t, < T, 
so that ‘F. < T in all cases. Hence, the minimum in (3.16) with respect to T from the 
interval [O, T] is attained either for % = 0 or for r = ?,.The first case applies if 

F. (0) > F1 (0), or, which is the same thing, if t, < 0. The second case is realized for 
tl > 0 and in turn breaks down into two cases in accordance with relations (3.23). The 

functional in all of the cases can be computed from Formula J,, = F,, (r). Thus, we have 
T= 0, Jo= lui-bTI+ e+6T- UT for fs < 0 
‘5= Cl, Jo=Iai-bT1-ke-l-6T-U(T-fl) forO<tl<2ei3-s 

r= tr, JO = 10 -f- bTI -i- e -I- 6T - U (T - t,) for t, > 2e6’1 (3.24) 

Substituting the expressions for r, and t, from (3.23) into (3.24) and carrying out the 
necessary transformations, we obtain 

Jo=lafbTI+e+.8T-UT, r=O VT<Ia+bTO (3,25) 

Jo-e+ 
6(la+bTI+W) 

$-J+s 9 T-= 
UT-lo+bz’( 

U-4-S 
V’>Ia+bTl, U(T-2&-‘)<~a+bTi+Ze) 
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Formulas (3.25) define the required quantity Jb = J (0) in all cases. We note that 

result (3.35) remains unchanged if we assume that only the coordinate is measured for 

t > 0. This is because we derived (3,S5) assuming the worst measured results, the worst 
measured data for the velocity being z (f) = b for t > 0. These measurements clearly 
add nothing to known initial measured data (I. 3). 

If we assume that measurement of the coordinate also ceases for c > 0 result (3.25) 
changes. In this case the control is based solely on initial measured data (1.3). The 
minimax value of the functional is then given by 

J,=minminmaxIzo+v&7’+u(T--)I (3.26) 
7 U X>.% 

where the maximum is computed over the rectangle defined by inequalities (1.3). Mini- 

max (3.26) can be computed similarly to, much more simply than, (-2.5). 

Determining the maximum, we obtain the following expression in place of (3.10) : 

J1 = minminmax[F”+u(T-t), F’-u(T-?)I 

F” = a -I- e ; (b”f 6) T, F’ = -a+ e-(b-QT (3.27) 

Here the quantities F’ andF” are independent of Y and T. Computing the minimum 
with respect to I(, we find as with (3.16) that 

J~=minmax[Ia+bT~+e+6T--U(T-?), a+67’1 
+ 

The function whose minimum we are required to find does not decrease with increas- 
ing T. The minimum is therefore attained for. T = 0. The required functional. the corre- 

sponding instant of correction, and the magnitude of the pulse in this case are 

J,= la-l- bTI+ e-l- 6T- UT, r=o, u= -Us@ (a + bT) 

for UT < I a -I- bTI and 

J, = E + 6T, 7 = 0, u= - (a -I- bT) / T (3.28) 

for UT >/ 1 a + bT I. 

The control L( is here computed from earlier Formulas (3.12) with allowance for the 
values of F’ and P”-from (3.27) and for the equality T = 0; Comparing (3.25) and (3.‘28), 

we see that Jo = II only when t = 0 in (3.25). In the remaining cases, i.e. when T > 0 

in relations (3.‘25), we have Jo < J,, which follows from the formulation of the problem, 
but can also be verified directly. 

Let us consider Formulas (3.25) in the case U -P 00. This happens when the possible 
aorrection pulse is large as compared with the errors in the initial conditions and meas- 
urements. Relations (3. ‘25) then yield 

Jo=~-I-O(U-% T=T-((~+~TI+~T)U-~+O(U-~) 

for all a, b, e, 6 and T 

The miss in this case is close to the error of measuring the coordinate e and the 

instant of correction T is close to the instant T of termination of the process. 
Relations (P. 5) indicate that only measurement of the coordinate at the assumed in- 

stant of correction T, i. e. of the quantity Y = y (I), is essential in solving the minimax 
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problem. Hence, solution of (3.25) can also be regarded as computation of the optimal 

correction in the case when only one measurement is possible during motion. It is expe- 
dient to make this measurement immediately before correction, i. e. at the instant 1: 

given by Eqs. (3.25). 
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Questions arising in solving the problem of design of the optimum contour of the super- 
sonic portion of plane and axisymmetric nozzles for flows involving any nonequilibrium 
processes are considered. An investigation is carried out on the example of the flow of 
gas containing foreign particles (solid, or liquid) by using Lagrange multipliers in the 
form first appIied to problems of supersonic gas dynamics by Guderley and Armitage p]. 

The exactly formulated problem of design of the supersonic portion of plane and axi- 
symmetric nozzles for nonequilibrium flows were considered in papers p and 31, while 

papers [4 and 51 dealt with the problem of flow of gas with foreign particles, In deriving 

the conditions necessary for the determination of the optimum authors of these papers 
had considered that case only in which the first set characteristic bounding on the right 
the region of influence of the sought contour intersects the rarefaction wave beam clo- 

sing characteristic originating in the flow past the starting point of a (contour) kink, or 
in the case of a curvature constraint in the flow past the initial section of the maximum 
permissible curvature (*). The consideration of that case only appeared natural, as for 

*) As will be clear from the following, in this case in the system of conditions derived 
in [4 and 5) the conditions along the particle streamline separating the region containing 
particles from the particle-free gas have been lost. 


